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REGULAR PAIR

• Density: Let G be a graph, for any two disjoint vertex sets
X and Y of G. The density of the pair (X ,Y ) is the ratio
d(X ,Y ) := e(X ,Y )

|X ||Y | .

• ε-regularity: Let ε > 0, the pair (X ,Y ) is called ε-regular if
for every A ⊆ X and B ⊆ Y such that |A| > ε|X | and
|B| > ε|Y | we have |d(A,B)− d(X ,Y )| < ε.

• Super-regularity: Let δ > 0, the pair (X ,Y ) is called
(ε, δ)-super-regular if it is ε-regular, degY (x) > δ|Y | for all
x ∈ X and degX (y) > δ|X | for all y ∈ Y .



PROPERTIES OF REGULAR PAIRS

LEMMA

Let (A,B) be an ε-regular pair of density d and Y ⊆ B such that
|Y | > ε|B|. Then all but at most ε|A| vertices in A have more
than (d − ε)|Y | neighbors in Y .

LEMMA (SLICING LEMMA)

Let α > ε > 0 and ε
′

:= max{ εα ,2ε}. Let (A,B) be an ε-regular
pair with density d. Suppose A

′ ⊆ A such that |A′ | ≥ α|A|, and
B
′ ⊆ B such that |B′ | ≥ α|B|. Then (A

′
,B
′
) is an ε

′
-regular pair

with density d
′

such that |d ′ − d | < ε.



REGULARITY LEMMA

LEMMA (REGULARITY LEMMA-DEGREE FORM)

For every ε > 0 and every integer m0 there is an
M0 = M0(ε,m0) such that if G = (V ,E) is any graph on at least
M0 vertices and d ∈ [0,1] is any real number, then there is a
partition of the vertex set V into l + 1 clusters V0,V1, ...,Vl , and
there is a subgraph G

′
= (V ,E

′
) with the following properties:

• m0 ≤ l ≤ M0;
• |V0| ≤ ε|V |, and Vi (1 ≤ i ≤ l) are of the same size L;
• degG′ (v) > degG(v)− (d + ε)|V | for all v ∈ V;

• G
′
[Vi ] = ∅ (i.e. Vi is an independant set in G

′
) for all i ;

• each pair (Vi ,Vj), 1 ≤ i < j ≤ l , is ε-regular, each with a
density 0 or exceeding d.



REGULARITY LEMMA



BLOW-UP LEMMA

LEMMA (BLOW-UP LEMMA-BIPARTITE VERSION)

For every δ,∆ > 0, there exists an ε = ε(δ,∆) > 0 such that the
following holds. Let (X ,Y ) be an (ε, δ)-super-regular pair with
|X | = |Y | = N. If a bipartite graph H with ∆(H) ≤ ∆ can be
embedded in KN,N by a function φ, then H can be embedded in
(X ,Y ).

LEMMA

For every δ > 0 there are εBL = εBL(δ), nBL = nBL(δ) > 0 such
that if ε ≤ εBL and n ≥ nBL, G = (A,B) is an (ε, δ)-super-regular
pair with |A| = |B| = n and x ∈ A, y ∈ B, then there is a
Hamiltonian path in G starting with x and ending with y.
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LOCATING VERTICES ON HAMILTONIAN

CYCLES

THEOREM (KANEKO AND YOSHIMOTO, 2001)

Let G be a graph of order n with δ(G) ≥ n
2 , and let d be a

positive integer such that d ≤ n
4 . Then, for any vertex subset S

with |S| ≤ n
2d , there is a Hamiltonian cycle C such that

distC(u, v) ≥ d for any u, v ∈ S.

• The result is sharp (|S| can not be larger) as can be seen
from the graph 2K n

2−1 + K2. When all the vertices of S are
placed in one of the copies of K n

2−1, then the bound
becomes clear.



LOCATING VERTICES ON HAMILTONIAN

CYCLES

THEOREM (SÁRKÖZY AND SELKOW, 2008)

There are ω,n0 > 0 such that if G is a graph with δ(G) ≥ n
2 on

n ≥ n0 vertices, d is an arbitrary integer with 3 ≤ d ≤ ωn
2 and S

is an arbitrary subset of V (G) with 2 ≤ |S| = k ≤ ωn
2 , then for

every sequence of integers with 3 ≤ di ≤ d, and 1 ≤ i ≤ k − 1,
there is a Hamiltonian cycle C of G and an ordering of the
vertices of S, a1,a2, ...,ak , such that the vertices of S are
encountered in this order on C and we have
|distC(ai ,ai+1)− di | ≤ 1, for all but one 1 ≤ i ≤ k − 1.

• Almost all of the distances between successive pairs of S
can be specified almost exactly.



LOCATING VERTICES ON HAMILTONIAN

CYCLES

The two discrepancies by 1 can not be eliminated:
• |distC(ai ,ai+1)− di | ≤ 1: parity reason, e.g. G = K n

2 ,
n
2
, S in

one side and di is odd.
• for all but one 1 ≤ i ≤ k − 1: Take two complete graphs on

U and V with |U| = |V | = n
2 . Let S = S

′ ∪ S
′′

with S
′ ⊂ U,

S
′′ ⊂ V and |S′ | = |S′′ | = |S|

2 , and add the complete
bipartite graphs between S

′
and V , and between S

′′
and

U.



LOCATING VERTICES ON HAMILTONIAN

CYCLES

THEOREM (FAUDREE AND GOULD, 2013)

Let n1, ...,nk−1 be a set of k − 1 integers each at least 2 and
{x1, ..., xk} be a fixed set of k ordered vertices in a graph G of
order n. If δ(G) ≥ n+2k−2

2 , then there is N = N(k ,n1, ...,nk−1)
such that if n ≥ N, there is a Hamiltonian cycle C of G such that
distC(xi , xi+1) = ni for all 1 ≤ i ≤ k − 1.

• Degree condition is sharp: G = K̄ n−2k+3
2

+ (n+2k−3
2(2k−2)K2k−2), if

k vertices are all selected from one of the copies of K2k−2.



LOCATING VERTICES ON HAMILTONIAN

CYCLES

THEOREM (GOULD, MAGNANT AND NOWBANDEGANI,
2017)

Given an integer k ≥ 3, let G be a graph of sufficiently large
order n. Then there exists n0 = n0(k ,n) such that if n1,n2, ...,nk
are a set of k positive integers with ni ≥ n0 for all i ,

∑
ni = n,

and δ(G) ≥ n+k
2 , then for any k distinct vertices x1, x2, ..., xk in

G, there exists a Hamiltonian cycle such that the length of the
path between xi to xi+1 on the Hamiltonian cycle is ni .

• Degree condition is sharp when k is even: Consider two
complete graphs A and B each of order n−(k+1)

2 . Let C be
the remaining k + 1 vertices. Let G = (A + C) ∪ (C + B)
where the copies of vertices of C are identified. If all of the
vertices x1, ..., xk are chosen from A and each length ni is
chosen to be n

k .



LOCATING PAIRS OF VERTICES ON

HAMILTONIAN CYCLES

CONJECTURE (ENOMOTO)

If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1, then for any

pair of vertices x, y in G, there is a Hamiltonian cycle C of G
such that distC(x , y) = bn

2c.

CONJECTURE (FAUDREE AND LI, 2012)

If G is a graph of order n ≥ 3 and δ(G) ≥ n
2 + 1, then for any

pair of vertices x, y in G and any integer 2 ≤ k ≤ n
2 , there is a

Hamiltonian cycle C of G such that distC(x , y) = k.
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SHARPNESS OF THE MINIMUM DEGREE

CONDITION

• The degree condition is sharp.
• Example 1: there is no Hamiltonian cycle such that x and y

have distance n
2 .

FIGURE: 2K n
2 −1 + K2



SHARPNESS OF THE MINIMUM DEGREE

CONDITION

• The degree condition is sharp.
• Example 2: x and y will be at distance n

2 in any Hamiltonian
cycle of the graph.

FIGURE: 2K n
2 −1 + K2



LOCATING PAIRS OF VERTICES ON

HAMILTONIAN CYCLES

THEOREM (FAUDREE AND LI, 2012)

If p is a positive integer with 2 ≤ p ≤ n
2 and G is a graph of

order n with δ(G) ≥ n+p
2 , then for any pair of vertices x and y in

G, there is a Hamiltonian cycle C of G such that distC(x , y) = k
for any 2 ≤ k ≤ p.

COROLLARY (FAUDREE AND LI, 2012)

If G is a graph of order n with δ(G) ≥ b3n
4 c, then for any pair of

vertices x and y of G and any positive integer 2 ≤ k ≤ bn
2c,

there is a Hamiltonian cycle C of G such that distC(x , y) = k.
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OUR RESULT

THEOREM (HE, LI AND SUN, 2016)

There exists a positive integer n0 such that for all n ≥ n0, if G is
a graph of order n with δ(G) ≥ n

2 + 1, then for any pair of
vertices x, y in G, there is a Hamiltonian cycle C of G such that
distC(x , y) = bn

2c.
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PREPARATION OF THE PROOF

THEOREM (HE, LI AND SUN, 2015)

There exists a positive integer n0 such that for all n ≥ n0, if G is
a graph of order n with δ(G) ≥ n

2 + 1, then for any pair of
vertices x, y in G, there is a Hamiltonian cycle C of G such that
distC(x , y) = bn

2c.

• Only need to consider the graphs with even order.
• Suppose 0 < ε� d � α� 1, and n is sufficiently large.
• A balanced partition of V (G) into V1 and V2 is a partition of

V (G) = V1 ∪ V2 such that |V1| = |V2| = n
2 .

• Extremal Case 1: There exists a balanced partition of
V (G) into V1 and V2 such that the density
d(V1,V2) ≥ 1− α.

• Extremal Case 2: There exists a balanced partition of
V (G) into V1 and V2 such that the density d(V1,V2) ≤ α.
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NON-EXTREMAL CASE
STEP 1: CONSTRUCTING A HAMILTONIAN CYCLE IN THE

REDUCED GRAPH

Let G be a graph not in either of the extremal cases. We apply
the Regularity Lemma to G.
• Reduced graph R: the vertices of R are r1, r2, ..., rl , and

there is an edge between ri and rj if the pair (Vi ,Vj) is
ε-regular in G

′
with density exceeding d .

• R inherits the minimum degree condition: δ(R) ≥ ( 1
2 − 2d)l .

• R is a Hamiltonian graph.
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NON-EXTREMAL CASE
STEP 2: CONSTRUCTING PATHS TO CONNECT CLUSTERS

• By the Hamiltonian cycle in R, we find a perfect matching
in R. Denote the clusters by Xi ,Yi according to the
matching. (Xi ,Yi) is called a pair of clusters.

• Construct paths Pi ’s and Qi ’s to connect different pairs of
clusters and to include x , y .

FIGURE: Construction of Pi ’s and Qi ’s.
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NON-EXTREMAL CASE
STEP 3: EXTENDING THE PATHS BY ALL THE VERTICES OF V0

• Deal with the vertices of V0 pair by pair.

FIGURE: Insert u, v ∈ V0 to Qi ’s.



NON-EXTREMAL CASE
STEP 4: CONSTRUCTING THE DESIRED HAMILTONIAN CYCLE

• Construct paths W 1
i ’s and W 2

i ’s in each pair of clusters by
Blow-up lemma and make sure x and y have distance n

2 on
this cycle.



EXTREMAL CASE 1

Extremal Case 1: There exists a balanced partition of V (G)
into V1 and V2 such that the density d(V1,V2) ≥ 1− α.

LEMMA

If G is in extremal case 1, then G contains a balanced spanning
bipartite subgraph G∗ with parts U1, U2 and G∗ has the
following properties:
(a) there is a vertex set W such that there exist vertex-disjoint
2-paths (paths of length two) in G∗ with the vertices of W as the
middle vertices (not the end vertices) in each 2-path and
|W | ≤ α2n;
(b) degG∗(v) ≥ (1− α1 − 2α2)n

2 for all v 6∈W.



EXTREMAL CASE 1

The proof has some sub-cases discussions depending on the
position of x ,y and the parity of n

2 . And the Blow-up lemma is
the main tool.

FIGURE: Extremal case 1.



EXTREMAL CASE 2

Extremal Case 2: There exists a balanced partition of V (G)
into V1 and V2 such that the density d(V1,V2) ≤ α.

LEMMA

If G is in extremal case 2, then V (G) can be partitioned into two
balanced parts U1 and U2 such that
(a) there is a set W1 ⊆ U1 (resp. W2 ⊆ U2) such that there exist
vertex-disjoint 2-paths in G[U1] (resp. G[U2]) with the vertices
of W1 (resp. W2) as the middle vertices in each 2-path and
|W1| ≤ α2

n
2 (resp. |W2| ≤ α2

n
2 );

(b) degG[U1](u) ≥ (1− α1 − 2α2)n
2 for all u ∈ U1 −W1 and

degG[U2](v) ≥ (1− α1 − 2α2)n
2 for all v ∈ U2 −W2.



EXTREMAL CASE 2

The proof has some sub-cases discussions depending on the
position of x and y .

FIGURE: Extremal case 2.
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FURTHER WORKS

• To avoid using Szemerédi’s regularity lemma?
• To locate more vertices (≥ 3) on Hamiltonian cycles with

precise distances?
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