Some recent applications of Szemerédi's Regularity Lemma

Weihua He

Department of Applied Mathematics, Guangdong University of Technology

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

OUTLINE

1 SZEMERÉDI'S REGULARITY LEMMA

2 LOCATING VERTICES ON HAMILTONIAN CYCLES

3 Sketch of the proof

OUTLINE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 SZEMERÉDI'S REGULARITY LEMMA

2 LOCATING VERTICES ON HAMILTONIAN CYCLES

3 Sketch of the proof

4 FURTHER WORKS

REGULAR PAIR

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- **Density**: Let *G* be a graph, for any two disjoint vertex sets *X* and *Y* of *G*. The density of the pair (*X*, *Y*) is the ratio $d(X, Y) := \frac{e(X, Y)}{|X||Y|}$.
- ϵ -regularity: Let $\epsilon > 0$, the pair (X, Y) is called ϵ -regular if for every $A \subseteq X$ and $B \subseteq Y$ such that $|A| > \epsilon |X|$ and $|B| > \epsilon |Y|$ we have $|d(A, B) - d(X, Y)| < \epsilon$.
- Super-regularity: Let $\delta > 0$, the pair (X, Y) is called (ϵ, δ) -super-regular if it is ϵ -regular, $deg_Y(x) > \delta |Y|$ for all $x \in X$ and $deg_X(y) > \delta |X|$ for all $y \in Y$.

PROPERTIES OF REGULAR PAIRS

LEMMA

Let (A, B) be an ϵ -regular pair of density d and $Y \subseteq B$ such that $|Y| > \epsilon |B|$. Then all but at most $\epsilon |A|$ vertices in A have more than $(d - \epsilon)|Y|$ neighbors in Y.

LEMMA (SLICING LEMMA)

Let $\alpha > \epsilon > 0$ and $\epsilon' := \max\{\frac{\epsilon}{\alpha}, 2\epsilon\}$. Let (A, B) be an ϵ -regular pair with density d. Suppose $A' \subseteq A$ such that $|A'| \ge \alpha |A|$, and $B' \subseteq B$ such that $|B'| \ge \alpha |B|$. Then (A', B') is an ϵ' -regular pair with density d' such that $|d' - d| < \epsilon$.

(日) (日) (日) (日) (日) (日) (日)

REGULARITY LEMMA

LEMMA (REGULARITY LEMMA-DEGREE FORM)

For every $\epsilon > 0$ and every integer m_0 there is an $M_0 = M_0(\epsilon, m_0)$ such that if G = (V, E) is any graph on at least M_0 vertices and $d \in [0, 1]$ is any real number, then there is a partition of the vertex set V into l + 1 clusters $V_0, V_1, ..., V_l$, and there is a subgraph G' = (V, E') with the following properties:

- $m_0 \le l \le M_0;$
- $|V_0| \le \epsilon |V|$, and V_i (1 $\le i \le I$) are of the same size L;
- $deg_{G'}(v) > deg_{G}(v) (d + \epsilon)|V|$ for all $v \in V$;
- $G'[V_i] = \emptyset$ (i.e. V_i is an independent set in G') for all i;
- each pair (V_i, V_j), 1 ≤ i < j ≤ l, is ε-regular, each with a density 0 or exceeding d.

REGULARITY LEMMA

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

BLOW-UP LEMMA

LEMMA (BLOW-UP LEMMA-BIPARTITE VERSION)

For every $\delta, \Delta > 0$, there exists an $\epsilon = \epsilon(\delta, \Delta) > 0$ such that the following holds. Let (X, Y) be an (ϵ, δ) -super-regular pair with |X| = |Y| = N. If a bipartite graph H with $\Delta(H) \leq \Delta$ can be embedded in $K_{N,N}$ by a function ϕ , then H can be embedded in (X, Y).

LEMMA

For every $\delta > 0$ there are $\epsilon_{BL} = \epsilon_{BL}(\delta)$, $n_{BL} = n_{BL}(\delta) > 0$ such that if $\epsilon \le \epsilon_{BL}$ and $n \ge n_{BL}$, G = (A, B) is an (ϵ, δ) -super-regular pair with |A| = |B| = n and $x \in A$, $y \in B$, then there is a Hamiltonian path in G starting with x and ending with y.

OUTLINE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 SZEMERÉDI'S REGULARITY LEMMA

2 LOCATING VERTICES ON HAMILTONIAN CYCLES

3 Sketch of the proof

4 FURTHER WORKS

THEOREM (KANEKO AND YOSHIMOTO, 2001)

Let G be a graph of order n with $\delta(G) \ge \frac{n}{2}$, and let d be a positive integer such that $d \le \frac{n}{4}$. Then, for any vertex subset S with $|S| \le \frac{n}{2d}$, there is a Hamiltonian cycle C such that $dist_C(u, v) \ge d$ for any $u, v \in S$.

 The result is sharp (|S| can not be larger) as can be seen from the graph 2Kⁿ₂₋₁ + K₂. When all the vertices of S are placed in one of the copies of Kⁿ₂₋₁, then the bound becomes clear.

THEOREM (SÁRKÖZY AND SELKOW, 2008)

There are ω , $n_0 > 0$ such that if G is a graph with $\delta(G) \ge \frac{n}{2}$ on $n \ge n_0$ vertices, d is an arbitrary integer with $3 \le d \le \frac{\omega n}{2}$ and S is an arbitrary subset of V(G) with $2 \le |S| = k \le \frac{\omega n}{2}$, then for every sequence of integers with $3 \le d_i \le d$, and $1 \le i \le k - 1$, there is a Hamiltonian cycle C of G and an ordering of the vertices of S, $a_1, a_2, ..., a_k$, such that the vertices of S are encountered in this order on C and we have $|dist_C(a_i, a_{i+1}) - d_i| \le 1$, for all but one $1 \le i \le k - 1$.

• Almost all of the distances between successive pairs of *S* can be specified almost exactly.

The two discrepancies by 1 can not be eliminated:

- |*dist_C*(*a_i*, *a_{i+1}*) − *d_i*| ≤ 1: parity reason, e.g. *G* = *K_{n/2}, n/2*, *S* in one side and *d_i* is odd.
- for all but one $1 \le i \le k 1$: Take two complete graphs on U and V with $|U| = |V| = \frac{n}{2}$. Let $S = S' \cup S''$ with $S' \subset U$, $S'' \subset V$ and $|S'| = |S''| = \frac{|S|}{2}$, and add the complete bipartite graphs between S' and V, and between S'' and U.

THEOREM (FAUDREE AND GOULD, 2013)

Let $n_1, ..., n_{k-1}$ be a set of k - 1 integers each at least 2 and $\{x_1, ..., x_k\}$ be a fixed set of k ordered vertices in a graph G of order n. If $\delta(G) \ge \frac{n+2k-2}{2}$, then there is $N = N(k, n_1, ..., n_{k-1})$ such that if $n \ge N$, there is a Hamiltonian cycle C of G such that dist_C(x_i, x_{i+1}) = n_i for all $1 \le i \le k - 1$.

Degree condition is sharp: G = K
 ^{n-2k+3}/₂ + (^{n+2k-3}/_{2(2k-2)}K_{2k-2}), if k vertices are all selected from one of the copies of K_{2k-2}.

THEOREM (GOULD, MAGNANT AND NOWBANDEGANI, 2017)

Given an integer $k \ge 3$, let G be a graph of sufficiently large order n. Then there exists $n_0 = n_0(k, n)$ such that if $n_1, n_2, ..., n_k$ are a set of k positive integers with $n_i \ge n_0$ for all $i, \sum n_i = n$, and $\delta(G) \ge \frac{n+k}{2}$, then for any k distinct vertices $x_1, x_2, ..., x_k$ in G, there exists a Hamiltonian cycle such that the length of the path between x_i to x_{i+1} on the Hamiltonian cycle is n_i .

• Degree condition is sharp when *k* is even: Consider two complete graphs *A* and *B* each of order $\frac{n-(k+1)}{2}$. Let *C* be the remaining k + 1 vertices. Let $G = (A + C) \cup (C + B)$ where the copies of vertices of *C* are identified. If all of the vertices $x_1, ..., x_k$ are chosen from *A* and each length n_i is chosen to be $\frac{n}{k}$.

LOCATING PAIRS OF VERTICES ON HAMILTONIAN CYCLES

CONJECTURE (ENOMOTO)

If G is a graph of order $n \ge 3$ and $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that dist_C(x, y) = $\lfloor \frac{n}{2} \rfloor$.

CONJECTURE (FAUDREE AND LI, 2012)

If G is a graph of order $n \ge 3$ and $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G and any integer $2 \le k \le \frac{n}{2}$, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = k$.

LOCATING PAIRS OF VERTICES ON HAMILTONIAN CYCLES

CONJECTURE (ENOMOTO)

If G is a graph of order $n \ge 3$ and $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

CONJECTURE (FAUDREE AND LI, 2012)

If G is a graph of order $n \ge 3$ and $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G and any integer $2 \le k \le \frac{n}{2}$, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = k$.

SHARPNESS OF THE MINIMUM DEGREE CONDITION

- The degree condition is sharp.
 - Example 1: there is no Hamiltonian cycle such that x and y have distance ⁿ/₂.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

FIGURE: $2K_{\frac{n}{2}-1} + K_2$

SHARPNESS OF THE MINIMUM DEGREE CONDITION

- The degree condition is sharp.
 - Example 2: *x* and *y* will be at distance $\frac{n}{2}$ in any Hamiltonian cycle of the graph.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

FIGURE: $2K_{\frac{n}{2}-1} + K_2$

LOCATING PAIRS OF VERTICES ON HAMILTONIAN CYCLES

THEOREM (FAUDREE AND LI, 2012)

If p is a positive integer with $2 \le p \le \frac{n}{2}$ and G is a graph of order n with $\delta(G) \ge \frac{n+p}{2}$, then for any pair of vertices x and y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = k$ for any $2 \le k \le p$.

COROLLARY (FAUDREE AND LI, 2012)

If G is a graph of order n with $\delta(G) \ge \lfloor \frac{3n}{4} \rfloor$, then for any pair of vertices x and y of G and any positive integer $2 \le k \le \lfloor \frac{n}{2} \rfloor$, there is a Hamiltonian cycle C of G such that dist_C(x, y) = k.

LOCATING PAIRS OF VERTICES ON HAMILTONIAN CYCLES

THEOREM (FAUDREE AND LI, 2012)

If p is a positive integer with $2 \le p \le \frac{n}{2}$ and G is a graph of order n with $\delta(G) \ge \frac{n+p}{2}$, then for any pair of vertices x and y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = k$ for any $2 \le k \le p$.

COROLLARY (FAUDREE AND LI, 2012)

If G is a graph of order n with $\delta(G) \ge \lfloor \frac{3n}{4} \rfloor$, then for any pair of vertices x and y of G and any positive integer $2 \le k \le \lfloor \frac{n}{2} \rfloor$, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = k$.

OUR RESULT

(日) (日) (日) (日) (日) (日) (日)

THEOREM (HE, LI AND SUN, 2016)

There exists a positive integer n_0 such that for all $n \ge n_0$, if G is a graph of order n with $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

OUTLINE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 SZEMERÉDI'S REGULARITY LEMMA

2 LOCATING VERTICES ON HAMILTONIAN CYCLES

3 Sketch of the proof

4 FURTHER WORKS

THEOREM (HE, LI AND SUN, 2015)

There exists a positive integer n_0 such that for all $n \ge n_0$, if G is a graph of order n with $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and *n* is sufficiently large.
- A balanced partition of V(G) into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \ge 1 \alpha$.
 - Extremal Case 2: There exists a balanced partition of V(G) into V₁ and V₂ such that the density d(V₁, V₂) ≤ α.

(ロ) (同) (三) (三) (三) (○) (○)

THEOREM (HE, LI AND SUN, 2015)

There exists a positive integer n_0 such that for all $n \ge n_0$, if G is a graph of order n with $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and *n* is sufficiently large.
- A balanced partition of V(G) into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \ge 1 \alpha$.
 - Extremal Case 2: There exists a balanced partition of V(G) into V₁ and V₂ such that the density d(V₁, V₂) ≤ α.

(ロ) (同) (三) (三) (三) (○) (○)

THEOREM (HE, LI AND SUN, 2015)

There exists a positive integer n_0 such that for all $n \ge n_0$, if G is a graph of order n with $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and *n* is sufficiently large.
- A balanced partition of V(G) into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \ge 1 \alpha$.
 - Extremal Case 2: There exists a balanced partition of V(G) into V₁ and V₂ such that the density d(V₁, V₂) ≤ α

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

THEOREM (HE, LI AND SUN, 2015)

There exists a positive integer n_0 such that for all $n \ge n_0$, if G is a graph of order n with $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and *n* is sufficiently large.
- A balanced partition of V(G) into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \ge 1 \alpha$.
 - Extremal Case 2: There exists a balanced partition of V(G) into V₁ and V₂ such that the density d(V₁, V₂) ≤ α

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

THEOREM (HE, LI AND SUN, 2015)

There exists a positive integer n_0 such that for all $n \ge n_0$, if G is a graph of order n with $\delta(G) \ge \frac{n}{2} + 1$, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that $dist_C(x, y) = \lfloor \frac{n}{2} \rfloor$.

- Only need to consider the graphs with even order.
- Suppose $0 < \epsilon \ll d \ll \alpha \ll 1$, and *n* is sufficiently large.
- A balanced partition of V(G) into V_1 and V_2 is a partition of $V(G) = V_1 \cup V_2$ such that $|V_1| = |V_2| = \frac{n}{2}$.
 - **Extremal Case 1**: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \ge 1 \alpha$.
 - Extremal Case 2: There exists a balanced partition of V(G) into V₁ and V₂ such that the density d(V₁, V₂) ≤ α.

(ロ) (同) (三) (三) (三) (○) (○)

(日) (日) (日) (日) (日) (日) (日)

STEP 1: CONSTRUCTING A HAMILTONIAN CYCLE IN THE REDUCED GRAPH

Let G be a graph not in either of the extremal cases. We apply the Regularity Lemma to G.

- Reduced graph *R*: the vertices of *R* are *r*₁, *r*₂, ..., *r_l*, and there is an edge between *r_i* and *r_j* if the pair (*V_i*, *V_j*) is *ε*-regular in *G*['] with density exceeding *d*.
 - *R* inherits the minimum degree condition: $\delta(R) \ge (\frac{1}{2} 2d)I$.
 - *R* is a Hamiltonian graph.

STEP 1: CONSTRUCTING A HAMILTONIAN CYCLE IN THE REDUCED GRAPH

Let G be a graph not in either of the extremal cases. We apply the Regularity Lemma to G.

- Reduced graph *R*: the vertices of *R* are *r*₁, *r*₂, ..., *r_l*, and there is an edge between *r_i* and *r_j* if the pair (*V_i*, *V_j*) is *ε*-regular in *G*['] with density exceeding *d*.
 - *R* inherits the minimum degree condition: $\delta(R) \ge (\frac{1}{2} 2d)I$.
 - *R* is a Hamiltonian graph.

(ロ) (同) (三) (三) (三) (○) (○)

STEP 2: CONSTRUCTING PATHS TO CONNECT CLUSTERS

- By the Hamiltonian cycle in *R*, we find a perfect matching in *R*. Denote the clusters by X_i, Y_i according to the matching. (X_i, Y_i) is called a pair of clusters.
- Construct paths *P_i*'s and *Q_i*'s to connect different pairs of clusters and to include *x*, *y*.

(日) (日) (日) (日) (日) (日) (日)

STEP 2: CONSTRUCTING PATHS TO CONNECT CLUSTERS

- By the Hamiltonian cycle in *R*, we find a perfect matching in *R*. Denote the clusters by X_i, Y_i according to the matching. (X_i, Y_i) is called a pair of clusters.
- Construct paths *P_i*'s and *Q_i*'s to connect different pairs of clusters and to include *x*, *y*.

FIGURE: Construction of P_i 's and Q_i 's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 3: Extending the paths by all the vertices of V_0

• Deal with the vertices of V_0 pair by pair.

FIGURE: Insert $u, v \in V_0$ to Q_i 's.

(日) (日) (日) (日) (日) (日) (日)

STEP 4: CONSTRUCTING THE DESIRED HAMILTONIAN CYCLE

• Construct paths W_i^1 's and W_i^2 's in each pair of clusters by Blow-up lemma and make sure *x* and *y* have distance $\frac{n}{2}$ on this cycle.

(日) (日) (日) (日) (日) (日) (日)

Extremal Case 1: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \ge 1 - \alpha$.

LEMMA

If G is in extremal case 1, then G contains a balanced spanning bipartite subgraph G^{*} with parts U_1 , U_2 and G^{*} has the following properties:

(a) there is a vertex set W such that there exist vertex-disjoint 2-paths (paths of length two) in G^* with the vertices of W as the middle vertices (not the end vertices) in each 2-path and $|W| \le \alpha_2 n$; (b) $\deg_{G^*}(v) \ge (1 - \alpha_1 - 2\alpha_2)\frac{n}{2}$ for all $v \notin W$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The proof has some sub-cases discussions depending on the position of x, y and the parity of $\frac{n}{2}$. And the Blow-up lemma is the main tool.

FIGURE: Extremal case 1.

Extremal Case 2: There exists a balanced partition of V(G) into V_1 and V_2 such that the density $d(V_1, V_2) \le \alpha$.

LEMMA

If G is in extremal case 2, then V(G) can be partitioned into two balanced parts U_1 and U_2 such that (a) there is a set $W_1 \subseteq U_1$ (resp. $W_2 \subseteq U_2$) such that there exist vertex-disjoint 2-paths in G[U₁] (resp. G[U₂]) with the vertices of W_1 (resp. W_2) as the middle vertices in each 2-path and $|W_1| \le \alpha_2 \frac{n}{2}$ (resp. $|W_2| \le \alpha_2 \frac{n}{2}$); (b) $\deg_{G[U_1]}(u) \ge (1 - \alpha_1 - 2\alpha_2)\frac{n}{2}$ for all $u \in U_1 - W_1$ and $\deg_{G[U_2]}(v) \ge (1 - \alpha_1 - 2\alpha_2)\frac{n}{2}$ for all $v \in U_2 - W_2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The proof has some sub-cases discussions depending on the position of x and y.

FIGURE: Extremal case 2.

OUTLINE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1 SZEMERÉDI'S REGULARITY LEMMA

2 LOCATING VERTICES ON HAMILTONIAN CYCLES

3 Sketch of the proof

FURTHER WORKS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- To avoid using Szemerédi's regularity lemma?
- To locate more vertices (≥ 3) on Hamiltonian cycles with precise distances?

FURTHER WORKS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- To avoid using Szemerédi's regularity lemma?
- To locate more vertices (≥ 3) on Hamiltonian cycles with precise distances?

Thank you!