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@ SZEMEREDI’S REGULARITY LEMMA



REGULAR PAIR

e Density: Let G be a graph, for any two disjoint vertex sets

X and Y of G. The density of the pair (X, Y) is the ratio
_ eXx.Y)

dX,Y):= X7V

o e-regularity: Let e > 0, the pair (X, Y) is called e-regular if
for every A C X and B C Y such that |A| > ¢|X| and
|B| > €| Y| we have |d(A,B) — d(X,Y)| <e.

e Super-regularity: Let 6 > 0, the pair (X, Y) is called
(e, 0)-super-regular if it is e-regular, degy(x) > 4| Y| for all
x € X and degx(y) > ¢|X| forally € Y.




PROPERTIES OF REGULAR PAIRS

LEMMA

Let (A, B) be an e-regular pair of density d and Y C B such that
|Y| > €|B|. Then all but at most ¢|A| vertices in A have more
than (d — €)| Y| neighbors in Y.

LEMMA (SLICING LEMMA)

Leta >e>0ande = max{<,2¢}. Let (A, B) be an e-regular
pair with density d. Suppose A" C A such that |A'| > o|A|, and
B' C B such that |B'| > a|B|. Then (A", B) is an € -regular pair
with density d’ such that |d' — d| < e.



REGULARITY LEMMA

LEMMA (REGULARITY LEMMA-DEGREE FORM)

For every e > 0 and every integer mg there is an

Moy = My(e, mg) such that if G = (V, E) is any graph on at least

My vertices and d € [0, 1] is any real number, then there is a

partition of the vertex set V into | + 1 clusters Vy, V4, ..., V), and

there is a subgraph G' = (V, E') with the following properties:
e my < /< My,

[Vo| < €|V|, and V; (1 < i <) are of the same size L;

degy (v) > degg(v) — (d+¢)|V| forallv e V;

G'[Vi]] = 0 (i.e. V; is an independant setin G') for all i;

each pair (V;, V;), 1 < i < j <, is e-regular, each with a
density O or exceeding d.



REGULARITY LEMMA




BLOW-UP LEMMA

LEMMA (BLOW-UP LEMMA-BIPARTITE VERSION)

For every 6, A > 0, there exists an ¢ = ¢(5, A) > 0 such that the
following holds. Let (X, Y) be an (e, 0)-super-regular pair with
|X|=1Y| = N. If a bipartite graph H with A(H) < A can be
embedded in Ky n by a function ¢, then H can be embedded in
(X,Y).

LEMMA

For every 6 > 0 there are eg; = €g(0), ngr = npr(6) > 0 such
thatife < eg andn> ng;, G= (A, B) is an (e, d)-super-regular
pair with |A| = |B| = nand x € A, y € B, then there is a
Hamiltonian path in G starting with x and ending with y.
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LOCATING VERTICES ON HAMILTONIAN
CYCLES

THEOREM (KANEKO AND YOSHIMOTO, 2001)

Let G be a graph of order n with 6(G) > 5, and let d be a
positive integer such that d < §. Then, for any vertex subset S
with |S| < 55, there is a Hamiltonian cycle C such that
distc(u,v) > d forany u,v € S.

e The result is sharp (|S| can not be larger) as can be seen
from the graph 2Kg_1 + K>. When all the vertices of S are
placed in one of the copies of Kg_1, then the bound
becomes clear.



LOCATING VERTICES ON HAMILTONIAN
CYCLES

THEOREM (SARKOZY AND SELKOW, 2008)

There are w, ny > 0 such that if G is a graph with §(G) > § on
n > ng vertices, d is an arbitrary integer with3 < d < 4 and S
is an arbitrary subset of V(G) with2 < |S| = k < 4, then for
every sequence of integers with3 < d; < d,and1 <i< k —1,
there is a Hamiltonian cycle C of G and an ordering of the
vertices of S, ay, ao, ..., ax, such that the vertices of S are
encountered in this order on C and we have

|distc(aj, ajr1) — dj| <1, forallbutone1 <i<k-—1.

¢ Almost all of the distances between successive pairs of S
can be specified almost exactly.



LOCATING VERTICES ON HAMILTONIAN
CYCLES

The two discrepancies by 1 can not be eliminated:
e |distc(aj, ajr1) — dj| < 1: parity reason, e.g. G = Kg%, Sin
one side and d; is odd.
e for all but one 1 < i < k — 1: Take two complete graphs on
Uand V with [U] = |V|= 2. Let S= S uS " with S’ c U,
S"c Vand|S|=|8"| =, and add the complete

bipartite graphs between S’ and V, and between S” and
U.



LOCATING VERTICES ON HAMILTONIAN
CYCLES

THEOREM (FAUDREE AND GOULD, 2013)

Letny,...,nk_4 be a set of k — 1 integers each at least 2 and
{x1,...,Xx } be a fixed set of k ordered vertices in a graph G of
order n. If §(G) > ™2K=2  then there is N = N(K, N, ..., Nk_1)
such that if n > N, there is a Hamiltonian cycle C of G such that
distc(Xi, Xjix1) = n; forall1 <i<k—1.

o Degree condition is sharp: G = K,- n-geia + (Bl Kok—2), if

k vertices are all selected from one of the copies of Kox_o.



LOCATING VERTICES ON HAMILTONIAN
CYCLES

THEOREM (GOULD, MAGNANT AND NOWBANDEGANI,
2017)

Given an integer k > 3, let G be a graph of sufficiently large
order n. Then there exists ny = ny(k, n) such that if ny, no, ..., Nk
are a set of k positive integers with n; > nq for all i ,>_ n; = n,
and §(G) > K, then for any k distinct vertices X1, Xo, ..., X in
G, there exists a Hamiltonian cycle such that the length of the
path between x; to xj,1 on the Hamiltonian cycle is n;.

e Degree condition is sharp when k is even: Consider two
complete graphs A and B each of order % Let C be
the remaining k + 1 vertices. Let G=(A+ C) U (C + B)
where the copies of vertices of C are identified. If all of the
vertices xi, ..., X, are chosen from A and each length n; is
chosen to be £.



LOCATING PAIRS OF VERTICES ON
HAMILTONIAN CYCLES

CONJECTURE (ENOMOTO)

If G is a graph of order n > 3 and 6(G) > 7 + 1, then for any
pair of vertices x, y in G, there is a Hamiltonian cycle C of G
such that distc(x,y) = [ 5].



LOCATING PAIRS OF VERTICES ON
HAMILTONIAN CYCLES

CONJECTURE (ENOMOTO)

If G is a graph of order n > 3 and 6(G) > 7 + 1, then for any
pair of vertices x, y in G, there is a Hamiltonian cycle C of G
such that distc(x,y) = [ 5].

CONJECTURE (FAUDREE AND L1, 2012)

If G is a graph of order n > 3 and 6(G) > 7 + 1, then for any
pair of vertices x, y in G and any integer2 < k < g there is a
Hamiltonian cycle C of G such that distc(x,y) = k.



SHARPNESS OF THE MINIMUM DEGREE
CONDITION

e The degree condition is sharp.

e Example 1: there is no Hamiltonian cycle such that x and y
have distance 3.

FIGURE: 2Kg_1 + Ko



SHARPNESS OF THE MINIMUM DEGREE
CONDITION

e The degree condition is sharp.

» Example 2: x and y will be at distance  in any Hamiltonian
cycle of the graph.

el N

— —

FIGURE: 2Kg_1 + Ko



LOCATING PAIRS OF VERTICES ON
HAMILTONIAN CYCLES

THEOREM (FAUDREE AND L1, 2012)

If p is a positive integer with2 < p < 7 and G is a graph of
order n with §(G) > "B, then for any pair of vertices x and y in

G, there is a Hamiltonian cycle C of G such that distc(x,y) = k
forany2 < k <p.



LOCATING PAIRS OF VERTICES ON
HAMILTONIAN CYCLES

THEOREM (FAUDREE AND LI, 2012)

If p is a positive integer with2 < p < 7 and G is a graph of
order n with 6(G) > %, then for any pair of vertices x and y in
G, there is a Hamiltonian cycle C of G such that distc(x,y) = k
forany2 < k <p.

COROLLARY (FAUDREE AND LI, 2012)

If G is a graph of order n with 6(G) > L%J, then for any pair of
vertices x and y of G and any positive integer2 < k < | 3],
there is a Hamiltonian cycle C of G such that distc(x, y) = k.



OUR RESULT

THEOREM (HE, LT AND SUN, 2016)

There exists a positive integer ny such that for all n > ng, if G is
a graph of order n with 6(G) > 4 + 1, then for any pair of
vertices x, y in G, there is a Hamiltonian cycle C of G such that
diStC(X7 y) = LgJ 2
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PREPARATION OF THE PROOF

THEOREM (HE, LT AND SUN, 2015)

There exists a positive integer ny such that for all n > ng, if G is
a graph of order n with 6(G) > 4 + 1, then for any pair of
vertices x, y in G, there is a Hamiltonian cycle C of G such that
dIStC(X7 y) = I_gJ o
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e Only need to consider the graphs with even order.
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PREPARATION OF THE PROOF

THEOREM (HE, LT AND SUN, 2015)

There exists a positive integer ny such that for all n > ng, if G is
a graph of order n with 6(G) > 4 + 1, then for any pair of
vertices x, y in G, there is a Hamiltonian cycle C of G such that
dIStC(X7.y) = LgJ g

e Only need to consider the graphs with even order.
e Suppose 0 < e < d < o < 1, and n is sufficiently large.

e A balanced partition of V(G) into V; and V» is a partition of
V(G) = Vi U Vo such that | V4| = | Vo] = 2.

o Extremal Case 1: There exists a balanced partition of
V(G) into V; and V> such that the density
d(V1, V2) Z 1—a.

o Extremal Case 2: There exists a balanced partition of
V(G) into V4 and V5 such that the density d( V4, V») < a.



NON-EXTREMAL CASE

STEP 1: CONSTRUCTING A HAMILTONIAN CYCLE IN THE
REDUCED GRAPH

Let G be a graph not in either of the extremal cases. We apply
the Regularity Lemma to G.
¢ Reduced graph R: the vertices of Rare ry, >, ..., r;, and
there is an edge between r; and r; if the pair (V;, V}) is
e-regular in G' with density exceeding d.



NON-EXTREMAL CASE

STEP 1: CONSTRUCTING A HAMILTONIAN CYCLE IN THE
REDUCED GRAPH

Let G be a graph not in either of the extremal cases. We apply
the Regularity Lemma to G.
¢ Reduced graph R: the vertices of Rare ry, >, ..., r;, and
there is an edge between r; and r; if the pair (V;, V}) is
e-regular in G' with density exceeding d.

* R inherits the minimum degree condition: §(R) > (3 — 2d)/.
¢ Ris a Hamiltonian graph.



NON-EXTREMAL CASE
STEP 2: CONSTRUCTING PATHS TO CONNECT CLUSTERS
e By the Hamiltonian cycle in R, we find a perfect matching
in R. Denote the clusters by X;, Y; according to the
matching. (Xj, Y;) is called a pair of clusters.



NON-EXTREMAL CASE
STEP 2: CONSTRUCTING PATHS TO CONNECT CLUSTERS
e By the Hamiltonian cycle in R, we find a perfect matching
in R. Denote the clusters by X;, Y; according to the
matching. (Xj, Y;) is called a pair of clusters.
e Construct paths P;’s and Q;’s to connect different pairs of
clusters and to include x, y.
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FIGURE: Construction of P/’s and Q’s.



NON-EXTREMAL CASE

STEP 3: EXTENDING THE PATHS BY ALL THE VERTICES OF Vj

e Deal with the vertices of V; pair by pair.

X, Y, X; Y,
)
Py P; P, S .__Pi
— —
Q, — Q Q, Q
—

FIGURE: Insert u,v € V; to Q’s.



NON-EXTREMAL CASE

STEP 4: CONSTRUCTING THE DESIRED HAMILTONIAN CYCLE

o Construct paths W}’s and W?’s in each pair of clusters by
Blow-up lemma and make sure x and y have distance 7 on
this cycle.




EXTREMAL CASE 1

Extremal Case 1: There exists a balanced partition of V(G)
into V; and V> such that the density d(Vq, Vo) > 1 — a.

LEMMA

If G is in extremal case 1, then G contains a balanced spanning
bipartite subgraph G* with parts Uy, U> and G* has the
following properties:

(a) there is a vertex set W such that there exist vertex-disjoint
2-paths (paths of length two) in G* with the vertices of W as the
middle vertices (not the end vertices) in each 2-path and

|W| < azn;

(b) degg-(v) > (1 —ay —2ap)3 forallv ¢ W.



EXTREMAL CASE 1

The proof has some sub-cases discussions depending on the
position of x,y and the parity of 3. And the Blow-up lemma is
the main tool.
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FIGURE: Extremal case 1.



EXTREMAL CASE 2

Extremal Case 2: There exists a balanced partition of V(G)
into V; and V5 such that the density d( V4, V2) < a.

LEMMA

If G is in extremal case 2, then V(G) can be partitioned into two
balanced parts Uy and U, such that

(a) there is a set Wy C U; (resp. W» C U>) such that there exist
vertex-disjoint 2-paths in G[U,] (resp. G[U-]) with the vertices
of Wy (resp. W>) as the middle vertices in each 2-path and

(Wi| < azg (resp. [Wa| < az3);

(b) deggju,(u) > (1 — aq —2az)3 forallu € Uy — Wy and
degG[Uz](v) >(1—ay— 20{2)5 forallv € Us — Wo.



EXTREMAL CASE 2

The proof has some sub-cases discussions depending on the
position of x and y.

FIGURE: Extremal case 2.
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FURTHER WORKS

e To avoid using Szemerédi’s regularity lemma?



FURTHER WORKS

e To avoid using Szemerédi’s regularity lemma?

¢ To locate more vertices (> 3) on Hamiltonian cycles with
precise distances?



Thank you!
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